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Abstract - This paper aims at analyzing 3D convection-diffusion-reaction in multi-connected domains. The objective is to 
create two types of domains (double and multi-connected), to analyze the influence of numerical results for the proposed 
methods (GFEM and LSFEM). The domain and the construction of the networks proposed in this paper are applications 
built with the aim of facilitating the comparison of works by other researchers. 
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1 Introduction 
 

In [1] a study of three-dimensional diffusion-
reaction in the form of the equation 
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with kx, ky and kz constant, B = B(x,y,z) e T = T(x,y,z) 
are functions of the spatial coordinates x, y and z ∈ ℝ 
is accomplished through two applications: first 
solving the Poisson equation (pure diffusion) and the 
second the Helmholtz equation (diffusion-reaction). In 
this work, these two applications will be dealt with, 
but with a new configuration in the domain. In the 
diffusion reaction, a hole (double convex domain) is 
inserted, and in the pure diffusion, two holes (multi-
connected domain). The two holes configuration will 
be used to analyze a problem proposed in [2], which 
deals with issues of convection-diffusion-reaction 
with variable coefficients in the form of the equation 
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with kx, ky and kz constant, B = B(x,y,z), Ax = Ax(x,y,z), 
Ay = Ay(x,y,z), Az = Az(x,y,z) and T = T(x,y,z) are 
functions of the spatial coordinates x, y and z ∈ ℝ. For 

this comparison, the application 6 of [2] will be used, 
where the convection coefficients vary quadratically 
with the spatial coordinates. Finally, a new 
convection-diffusion with analytical solution 
application will be proposed and analyzed with a 
configuration containing two holes. 
 
2 Formulation 
 

Here is a summary of the formulation according to 
the Galerkin and Least Squares methods. It will use 
the equation (2) that represents the three phenomena: 
convection, diffusion and reaction. 
 
2.1 Least Squares 

 
When applying the least squares method used for 

three-dimensional phenomena, the addition of three 
auxiliary equations, will generate a system of four  
differential equations of the first order with four 
variables, defined as follows, 
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Note that the three equations auxiliary, equations 

(3b-d) have immediately returned, the numeric result 
of the derivatives of temperature in the three spatial 
coordinates. 

The least squares method generates a linear system 
in the form [3]: 
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where: 
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Significantly, the formulation of the problem posed 

by the LSFEM follows that the system described in 
(4) is symmetrical and positive-definite for any of the 
equation's coefficients values (2). Furthermore, there 
is the advantage of holding only the non-null 
coefficients from the global matrix, these being of 
type i ≥ j, i.e., only the coefficients of the upwards 
main diagonal, because of the matrix symmetry. Note 
that for the GFEM this is only possible for non-
convective issues, which can be seen next in the Eq. 
(10a). Further details of this formulation can be found 
in [2]. 
 
2.2 The Galerkin Method 

 
Taking as residual the following equation,  

 

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
x
TA

z
Tk

y
Tk

x
TkR xzyx 2

2

2

2

2

2
 

         BT
z
TA

y
TA zy +

∂
∂

+
∂
∂ ,              (6) 

 
And replacing it, in equation [4,5],  
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where Nnodes is the number of nodes in element. 

The following is the integral element, 
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The application of some integration techniques and 

some algebraic equations generates the following 
linear system, 
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Where Γ represents the contour, h is the heat 

transfer coefficient, Ta is the environmental 
temperature, and q is the contour's heat flux density. 

Unlike the LSFEM, in the GFEM for the calculation 
of the temperature's derivatives in the three spatial 
coordinates, an artifice of some kind will be necessary 
to calculate the derivatives from the values found in 
T(x, y, z). The alternative used in this work, will be to 
calculate them by approximation provided as follows, 
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Where k = 1, 2 or 3, where x1 = x, x2 = y and x3 = z. 

 
 
3 Numerical Applications 
 
 

The calculation of the matrix coefficients (4), and 
(9) are obtained by the Gauss numerical integration 
[4], with the actual elements mapping through the 
reference elements in the local coordinates ξ, η and ζ 
(-1 ≤ ξ,η,ζ ≤ 1), where the Lagrange interpolation 
functions will be used [5]. 

The systems of algebraic equations represented in 
(9) for GFEM, and in (4) for the LSFEM will be 
solved by the Gauss-Seidel methodology, and with the 
stopping criterion with a maximum error of Emax ≤   
10-10. The computer code was developed in Fortran 
language, on a computer with the following 
characteristics: Intel Corel 2 Duo, 2, 19 GHz, 8GB de 
RAM. The networks were internally generated for the 
Cartesian domains. The actual elements are taken as 
straight prisms and they are refined within the limits 

of the computer's available memory. As mentioned 
earlier, the domains and the adopted networks were 
chosen to facilitate the comparison of results by other 
researchers. 

To analyze the results of the four applications that 
will be proposed in this paper, because of the existing 
analytical solution for them, the contour conditions 
are adopted to meet the analytical solution. For the 
analysis of error in the numerical solution will be used 
two types of norms; the L2 norm of error defined in 

[6] as 
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number of nodes across the network, and ei = T(num)i – 
T(an)i, where T(num) is the numerical solution result and 
T(an) the result of the analytical solution. This norm 
aims to provide a notion of the average error 
committed in the entire analyzed domain.  

In addition to the L2, the L∞ norm defined as: 
|| )()( iannumi TTe

i
−=  will be used as well. The L∞ norm 

represents the largest network error for each type of 
refinement. 

In the following applications is assumed that h = ∆x 
= ∆y = ∆z, where ∆x, ∆y, e ∆z the hexahedron edges. 
As shown in [1,2], the networks will be built, for the 
posed problems, with linear hexahedrons (with linear 
interpolation functions - 8 nodes) which are already 
presenting very good results. 
 
 
Application 1 - Diffusion-Reaction 
  

This application will be adopting an analytical 
solution for equation (2), with kx, ky, kz and B units, as 
follows, 

 
zyxzyxT sinsinsin),,( ++=  

x
x

zyxT cos),,(
=

∂
∂ , 

y
y

zyxT cos),,(
=

∂
∂ , z

z
zyxT cos),,(

=
∂

∂ . 

 
Furthermore, it will be used a configuration with 

one hole. The construction was performed from a 
straight-rectangle parallelepiped, measuring 

1,0 ≤≤ zx  and 5.00 ≤≤ y  with a hole inserted through 
the xz face, as shown in Fig 1. 
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Fig. 1 Network with a hole, the xz plane vision 

 
 

Comparing the numerical results from Tables 1 to 3 
with the results shown in application 2 in [1]. It is 
noted that the overall order of precision found in the 
two cases are similar; demonstrating that the two 
methods provided excellent results for the solution of 
T(x,y,z) (in the order of 10-6 for an h = 1/10) even with 
the existence of a hole in the domain. In the event of a 
hole, one must consider the existence of contour 
conditions, not only on the outside of the cube but 
also on the inside (hole). Again, the LSFEM showed 
about 2-3 orders of precision better than the GFEM 
(Tables 2 and 3). Table 2 shows the numerical results 
of xT ∂∂ /  and zT ∂∂ / , the differences were 
insignificant to the point of being considered as equals 
in this work. 

 
Table 1 Results for the solution of T(x,y,z), application 1 

NNost Nelem* h 
L2 norm L∞ norm 

Galerkin LSFEM Galerkin LSFEM 

672 420 1/10 4.85E-06 5.74E-06 1.58E-05 2.34E-05 

4312 3360 1/20 1.33E-06 1.60E-06 4.01E-06 5.94E-06 

13440 11340 1/30 6.40E-07 7.45E-07 1.91E-06 2.66E-06 
*Nelem: number of elements in the computational network. 

 
Table 2 Results for the solution of Tx(x,y,z) = Tz(x,y,z), application 1 

h 
L2 norm L∞ norm 

Galerkin LSFEM Galerkin LSFEM 

1/10 2.57E-02 6.15E-05 4.12E-02 2.05E-04 

1/20 1.30E-02 1.88E-05 2.08E-02 7.05E-05 

1/30 8.72E-03 1.33E-05 1.39E-02 9.77E-05 

 
Table 3 Results for the solution of Ty(x,y,z), application 1 

h 
L2 norm L∞ norm 

Galerkin LSFEM Galerkin LSFEM 

1/10 1.34E-02 1.59E-05 2.26E-02 5.16E-05 

1/20 6.87E-03 4.74E-06 1.16E-02 1.95E-05 

1/30 4.61E-03 5.24E-06 7.84E-03 4.01E-05 
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Application 2 - Pure Diffusion 
 

This application will adopt an analytical solution for 
Eq. (2), with kx, ky, kz unitary and B null, as follows, 
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Now, contrary to the first application, it will be 
adopted a multi-connected domain, where a straight-
rectangle parallelepiped identical to the first 
application, but with two holes instead of one, as 
shown in Figure 2, is used as computational domain. 

When comparing the numerical results exhibited in 
Tables 4-6; with the results from the unitary cube 
domain shown in application 1 [1], it is noted that the 
order of precision is even better with the existence of 
two holes. This can be demonstrated, e.g., for an h = 
1/10 in the T(x,y,z) solution, where the order of 

precision for a network with two holes is in the order 
of 10-4, while for the unitary cube is in the order of 10-

3 to the L2 norm. Essentially, the results displayed in 
Table 4 show that the three proposed refinements 
demonstrate little difference of precision; therefore, it 
is not advisable, in this case, a further refining of the 
network, because with a h = 1/10 network, an actual 
error in the order of 10-4 for temperature analysis 
issues; is considered outstanding. As in the case of the 
unitary cube [1], the GFEM showed the worst results 
in the temperature variation analysis in the three 
spatial directions. Again, the LSFEM displayed better 
results in this analysis; thus, demonstrating its 
potential application for calculating heat fluxes. 

 
 

 
Fig. 2 Network with two holes, the xz plane vision 

 
 

 

 

Table 4 Results for the solution of T(x,y,z), application 2 

NNost Nelem h 
L2 norm L∞ norm 

Galerkin LSFEM Galerkin LSFEM 

678 410 1/10 8.88E-04 9.13E-04 3.97E-03 4.59E-03 

4301 3280 1/20 2.43E-04 2.46E-04 9.68E-04 1.15E-03 

13328 11070 1/30 1.12E-04 1.13E-04 4.28E-04 5.08E-04 
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Table 5 Results for the solution of Tx(x,y,z), application 2 

h 
L2 norm L∞ norm 

Galerkin LSFEM Galerkin LSFEM 

1/10 3.91E-01 1.48E-02 1.71E-00 1.16E-01 

1/20 1.97E-01 7.65E-03 9.18E-01 4.58E-02 

1/30 1.31E-01 4.69E-03 6.27E-01 2.43E-02 

 

Table 6 Results for the solution of Ty(x,y,z) ≅ Tz(x,y,z), application 2 

h 
L2 norm L∞ norm 

Galerkin LSFEM Galerkin LSFEM 

1/10 2.14E-01 6.42E-03 9.78E-01 4.21E-02 

1/20 1.00E-01 4.29E-03 4.92E-01 3.45E-02 

1/30 6.78E-02 2.72E-03 3.28E-01 1.88E-02 

 

Application 3 - Diffusion-Convection 
 

In this application, a case of convection-diffusion 
will be treated. Since there is no record, in the 
literature, for such an analytical solution, we proposed 
the following, 
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With zyx eeezyxT =),,( . Since, this is a one-way 

velocity problem (y direction), for a configuration 
containing the same network/domain from the earlier 
application (two holes), the assumption is of a 
constant velocity in the domain not influenced by the 
two holes. 

Table 7, shows both methods having excellent results 
in the T(x,y,z) solution; yet, in the temperature 
derivatives solution (Table 8), there is a significant 
decrease in the GFEM precision, with a reduction of 
four orders of precision compared to the one by the 
LSFEM. In other words, the LSFEM can virtually 
maintain the same precision for each of the adopted 
networks, either in the temperature solution or in the 
derivatives thereof. 

This problem would be analogous to a Freon flow 
(Refrigerant-12) (CCI2F2), where for a temperature 
near 280K (note that for the analytic solution adopted, 
the temperature ranges varies from 274.15 K (1°C) to 
285.33K (12.18°C in )1,5.0,1(),,( =zyx ) the thermal 
conductivity equals k = 0.073 W/mK, requiring a y-
direction velocity of 0.219 m/s [7]. 

 
Table 7 Results for the solution of T(x,y,z), application 3 

h 
L2 norm L∞ norm 

Galerkin LSFEM Galerkin LSFEM 

1/10 5.56E-05 5.48E-05 1.68E-04 1.64E-04 

1/20 1.52E-05 1.49E-05 4.16E-05 4.18E-05 

1/30 7.09E-06 6.87E-06 1.85E-05 1.87E-05 
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Table 8 Results the solution of Tx(x,y,z) ≅ Ty(x,y,z) ≅ Tz(x,y,z), application 3 

h 
L2 norm L∞ norm 

Galerkin LSFEM Galerkin LSFEM 

1/10 2.11E-01 1.29E-04 5.89E-01 7.82E-04 

1/20 1.04E-01 1.14E-04 2.99E-01 1.05E-03 

1/30 6.93E-02 6.44E-05 2.00E-01 4.78E-04 

 

Application 4 - Convection-Diffusion-Reaction with 
variable coefficients (quadratic functions) 
 

As shown in [2], application 6, is proposed here a 
problem of convection-diffusion-reaction with 
variable coefficients according to the equation below, 
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with 3)]()()[(100 222 ++−++−++−= zzyyxxB , in 
which the proposed analytical solution is of type 

zyxezyxT ++=),,( . 
As in the two previous applications, this will also 

employ the computational domain configuration 
shown in Figure 2. Essentially, the variable 
coefficients are used here to simulate a situation of 
variable velocity in three directions at all points of the 
network, not that these situations will necessarily 
become actual engineering issues. 

Unlike the application 6 of [2],  for a unitary cube, 
the numerical solution of T(x,y,z) for the GFEM 
shows a decrease of nearly two orders of precision in 
the two holes case, while the LSFEM increased one 
(Table 9). Both methods have approximately the same 
orders of precision for the refinements adopted; 
however, the LSFEM was more efficient for the 
multi-connected domain than for the unitary cube, and 
the opposite occurred with the GFEM. In turn, the 
numerical precision of the derivatives in the 
temperature three directions (Table 10), in this 
configuration is similar to that presented in [2], 
emphasizing that the LSFEM in this application was 
incapable of assuring the same order of precision for 
the temperature solution. 

 

4 Conclusions 
 

The finite elements method has proven, over the 
years, to be a major tool in solving engineering 
problems involving heat and mass transfer, and of 
fluid mechanics. Some methods prove to be 
ineffective in situations more complex, where the 
domains are shown with irregularities, orifices and 
obstructions. Here, we show that the finite element 
method in the LSFEM and the GFEM variants, even 
for more complex cases, remains an excellent tool. In 
general, the two methods provided excellent results. 
In particular, the GFEM remains superior for the 
temperature analysis alone; while the LSFEM is 
outstanding for when the temperature and the heat 
flux are to be calculated, where the order of precision 
for the temperature and for the derivatives are 
equivalent. 
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Table 9 Results for the solution of T(x,y,z), application 3 

h 
L2 norm L∞ norm 

Galerkin LSFEM Galerkin LSFEM 

1/10 4.55E-03 8.44E-03 1.30E-02 3.58E-02 

1/20 1.36E-03 4.08E-03 3.55E-03 1.75E-02 

1/30 6.49E-04 2.60E-03 1.64E-03 1.01E-02 

 
Table 10 Results for the solution of Tx(x,y,z) ≅ Ty(x,y,z) ≅ Tz(x,y,z), application 3 

h 
L2 norm L∞ norm 

Galerkin LSFEM Galerkin LSFEM 

1/10 2.09E-01 1.60E-01 5.89E-01 8.22E-01 

1/20 1.03E-01 5.89E-02 2.99E-01 2.37E-01 

1/30 6.88E-02 3.36E-02 2.00E-01 1.20E-01 
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